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Abstract

This report describes a new method based on the Extended Gaussian Image (EGI) which
can be used to determine the pose of a 3-D object. In this scheme, the weight associated
with each outward surface normal is a complex weight. The normal distance of the surface
from the predefined origin is encoded as the phase of the weight while the magnitude of
the weight is the visible area of the surface. This approach decouples the orientation and
translation determination into two distinct least-squares problems. Experiments involving
synthetic data of two polyhedral and two smooth objects indicate the feasibility of this method.
The best results are 4.7% and 1.5% (total distance error) for the polyhedral and smooth objects
respectively. The figures are quoted in terms of percentages of the maximum allowable
displacement. Experiments using real range data for the two smooth objects yield good
results, with total translation errors as low as 2.6%.  _ r
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Chapter 1

Introduction

A fundamental task in most 3-D computer vision and robotic systems is the determination of
object pose in space. The pose of an object specifies completely its orientation and position
with respect to a predefined frame or coordinate system.

There are two primary approaches to solve the pose determination problem: local and
global. The local approach, typified by Faugeras {7] and Tanaka [21], seeks to match local
features such as edges and curvature of surfaces and compute the linear transformation param-
eters from them. The global approach, on the other hand, does not rely on local and spatial
correspondences to achieve this aim. It maps local features such as intensity, edge or area into
an R”*-space where matching between the object and model is performed. Matching using the
Hough transform and moment invariants are two examples in 2-D matching.

The Extended Gaussian Image (EGI) representation is an example of the global approach
in 3-D space. The primary drawback of the EGI is the inability to determine the translation of
a recognized 3-D object. This is because the weights in the EGI representation contain only
area information and no positional data. One way to encode the positional information is to
express the equation of the object face in dual space. This is the approach taken by Roach et al
(20] who call the resulting encoded representation the spherical dual image. The dual space
represents both the orientation and position of the planes or faces of the 3-D object; edges are
explicitly described as connections between dual points. However, this scheme is primarily
for object representation. Furthermore, planes passing near or through the designated origin
cannot be dualized properly; they map to infinity or very large values.

This report describes a new representation called the Complex Extended Gaussian Image
(CEGI) from which both the orientation and translation of a given 3-D object can be determined.
In addition, the CEGI has the desirable property of being able to differentiate larger classes of
objects than the conventional EGI.

1.1 Brief Description of the Complex EGI

The Complex EGI (CEGI) addresses the main deficiency of the conventional EGI. namely the
inability to extract translation parameters. This is because the weight at each EGI cell is just



the sum of the area of the surface patches whose normal is associated with the cell. Thus the
EGI weights are devoid of any direct positional information and are translation invariant.

The weight at each discrete cell of the CEGI is a complex number. The complex weight
associated with a particular surface patch is determined as follows: The magnitude of the
weight is the visible surface area of the object associated with its surface normal. The phase of
each weight is the key to displacement determination; it is the (signed) distance of the surface
patch from a designated origin in the direction of its normal.

By encoding the distance information this way, it can be easily shown that the magnitude
of the total weight at each cell of the CEGI is independent of object position. Thus orientation
can be determined in a manner identical to that for the conventional EGI. Once the orientation
is found, the translation parameters can then be calculated by comparing the phases of the
complex weights at matched cells of the model CEGI and the partial object CEGI.

Experiments were made to test the effectiveness of the CEGI concept in determining
object translation. Two polyhedral models (one simple, the other relatively more complex in
shape), and two smooth models (torus and ellipsoid) were employed in experiments involving
synthesized data. To further validate and test out this concept, experiments involving real
range data for the torus and ellipsoid were performed as well. The smallest error in total
distance obtained in the simulations involving polyhedral objects is 4-7% while that for the
smooth objects is 1-5%. For the experiments using real range data, the smallest error is 3-5%.
The error figures are quoted in percentages of the maximum allowable displacement.

1.2 Organization of Report

Chapter 2 gives a brief description of the Extended Gaussian Image (EGI) and presents the
proposed variant of the EGI, namely the Complex EGI or CEGI. It shows how the distance
information can be eciiccded in the CEGI represetation.

The pose recovery strategy of a given object is subsequently presented in Chapter 3.
Emphasis is especially made on how the translation parameters are determined, since this is
the main advantage of CEGI over the conventional EGI representation. In addition, error
analysis is made on the recovered translation factors. We also justify using a view suitability
index as a measure of the translation parameter error bound.

Chapter 4 focuses on the results of simulations performed. There are two parts to this:
In the first part, a set of simulations is made for both polyhedral and smooth objects to
verify the feasibility of the CEGI as a means of extracting the displacement of the object.
This is subsequently followed by the results obtained for the simulations made using the two
polyhedral objects to verify the linear upper bound of translation errors.

The following chapter (Chapter 5) describes the experiments conducted using real range
data and results obtained using the smooth models.

Final comments and conclusions are presented in Chapter 6.

9




1.3 Past Research on 3-D Object Pose Determination

Research on 3-D object pose determination has been iniensive, but with varied resuits, as
the comprehensive survey by Besl and Jain [2] indicates. This section is not intended to be
exhausive in its description of some of the research made in this area. It concentrates more
on the research performed on pose determination for smooth 3-D objects. The motivation is
clear: The world around us is composed of objects that are usually nor piecewise planar, but
rather smooth and continuous in nature.

Nevatia and Binford [18] match curved objects using generalized cylinders. Faugeras
and Hebert {8], and Faugeras [6] have proposed a 3-D object recognition algorithm based
on geometrical matching between primitive surfaces. The primitive surface that was actually
implemented is the plane, though quadric surface algorithms are presented as well. The best
accuracy quoted in [6] is 2.3 degrees for the rotation angle and 3 millimeters for the translation.
The accuracy of the range data is 1 millimeter.

Bolles, Horaud and Hannah [3] developed 3DPO which recognizes and locates 3-D objects
using range data. The system’s hypothesis generation and matching is based on matching of
several features or feature clusters involving object specific features such as a circular arc of
a specific radius, and edges. Fan, Medioni and Nevatia [5], on the other hand, use surface
descriptions such as jump boundaries, creases and limbs to match and locate 3-D objects. No
accuracy figures were supplied in these two papers.

A recent paper by Ponce and Kreigman [19] describes a method to recognize and locate
curved objects in a monocular intensity image. They consider the image contours, namely the
projections of surface discontinuities and occluding contours, as the basis for recognition and
locaiion of the object. However, this assumes that the contour equations are parametrically
known. Furthermore, the location of the object is estimated in the x-y plane only.

1.4 Past Research on the EGI

The EGI has been applied [12, 10] to determine the object attitude, where the rotation in 3-D
space brings a sample object into correspondence with a prototype. It has also heen used as a
means of object recognition [11] in an industrial environment. The EGI of the visible portion
of an unknown object is formed by a constrained optimization method applied to data from
photometric stereo [13]. The prototype EGI which best matches the partial EGI identifies
the object. Little [15] uses a variant of the EGI method which employs the mixed volume
as a basis of attitude determination of the sensed object. The mixed volume is a geometric
construction used in Minkowski’s [16] proof of existence of a convex object given a valid EGI.
This report addresses the deficiency faced by the normal EGI method, namely the inability to
recover translation of objects.

In addition tc recognizing obiects and determining object attitude, the EGI has also been
used to reconstruct convex polyhedra. Ikeuchi [13] has proposed a reconstruction precedure
which minimizes the sum of the square differences between the calculated areas of the poly-
hedron and the given area in the EGL. Little’s iterative scheme [14] minimizes the error in the
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area of the faces as well as in the location of the centroid of the reconstructed figure. More
recently, Moni [17] has proposed a reconstruction method which involves determining the
adjacency of faces and the length of edges of the polyhedron from the EGI.

Dane and Bajcsy [4] make use of the Gaussian Image to spatially segment a group of range
points lying on a surface of a 3-D object into planar and quatric surfaces. The method propose:i
by Hebert and Ponce [9] segments depth maps into plane, cylindrical and conical primitives.
This is done by mapping the estimated surface normals to the EGI and subsequently using the
Hough transform to characterize the surfaces.




Chapter 2
The Complex EGI (CEGI)

2.1 Introduction to the EGI

The EGI of a 3-D object is a histogram which records the variation of surface area with
surface orientation. The weights in the EGI representation do not contain any direct distance
information. As such, it is translation invariant, and it is easy to see that the F-GI representation
rotates in the exact manner as the object in space. The EGI of a cube is shown in Fig. 2.1.

2.2 Description of the CEGI

In the conventional EGI representation, each weight associated with the normals of the object
face are scalars which represent the associated visible face area. The CEGI (complex EGI)
concept extends such a representation by adding the normal distance of that face to the origin
(in the direction of the normal) as the phase component. This is illustrated in Fig. 2.2. In
other words, the weight associated with a particular normal in the CEGI is a complex number
whose magnitude is the corresponding visible face area and whose (signed) phase is the normal
distance of the face from the designated origin in the direction of the normal. To illustrate
further, in Fig 2.3, the complex weight associated with face A is Aj, %, where Ay, is the area
of face A with the outward normal n.. and d, is the normal distance of the plane I, (within
which Ay, lies) to an assigned origin. d, is positive if the perpendicular vector from the origin
to the face is in the same direction as the outward facing normal of the face. The value of di
is positive in this case (Fig. 2.3).

For any given point in the CEGI corresponding to normal fi,, the magnitude of the point’s
weight is |Az,e%|. A, is independent of the normal distance, and if the object is convex,
the distribution of As, corresponds to the conventional EGI representation. If the object
is not convex, the magnitude of each weight will not necessarily be equal to those of the
corresponding conventional EGI. This is an important attribute of the CEGI which will be
further described in Section 2.3 in this chapter. The translation invariance propertv of the
weight magnitude applies even if there are more than one contiguous surface patches witn the




Gauss mapping

(a) Cube (b) EGI of cube
(Note: The weight is shown only for normal n 1 for clarity)

Figure 2.1: Illustration of the Extended Gaussian Image

Gauss mapping

(a) Cube (b) CEGI of cube
(Note: The weight is shown only for normal n 1 for clarity)

Figure 2.2: Illustration of the Complex Extended Gaussian Image




same outward normal. Consider surfaces whose normals are i, (Fig. 2.4). Before translation,
the corresponding complex weight is

N )
Py, = Ase® 2.1)
=1

After a translation along a vector T, the complex weight becomes

N
Pp = AT = JThp, (2.2)
=]

Hence for each point in the CEGI, the magnitude of the weight is independent of the
translation. However, the complex number folds back onto itself for every magnitude change
of 2. Hence there exists an ambiguity range beyond which errors would occur. In our method,
all distances are normalized such that the greatest expected change in distance is =.

So a change in the position in the same direction as the surface normal corresponds to
a change in the phase component of the complex representation, without any change in its
magnitude. Hence by comparing the magnitudes, we can then recognize objects and determine
their orientations as we would for a conventional EGI. In addition, by comparing the differences
in the complex weight phases, we can then proceed to calculate the distance change along the
normals.

2.3 Representation of convex and non-convex objects

Another drawback of the conventional EGI is that it is possible for a convex object and a class
of non-convex objects to have identical EGI’s. CEGI’s reduces this possibility. Consider the
following two objects:

Suppose these two objects (one convex and the other non-convex) have identical EGI’s.
Comparing the weights associated with the normal in the positive z-direction, we have for
object (1) (from Fig 2.5),

P i =A™ (2.3)
For object (2),

Py =Ane + Ane’= (2.4)
Since they have identical EGI’s, A; = A;; + A22. Equating (2.3) to (2.4), we get

(Ag1 +An)eh = Ape™ + Ape2
Aj1 cosdy + Ayacosdy + j(Agy sinday + Ax sindas) (2.5)

For real values of d,d; and dj, taking the square of the magnitudes,




d

1 x Origin

Figure 2.3: Example of an oriented face with a complex weight Ap, &%
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Figure 2.4: Effect of translating object on the complex weight for particularly oriented faces




Object (1) Object (2)

I gure 2.5: Example of two objects having identical EGI’s

(A1 ~ 422)* = (A2; COS day + Az COs dy)* + (Az1 sinday + Az sin d)? (2.6)
=> C0Sdy; COSdy +sindz; sindyy =1 2.7
= cos(dy; —dn) =1 2.8)

Hence for —7 < dyy,dp < 7, dp1 = dya. In other words, the CEGI’s of these two objects
are different since here is no real solution for d; when dy; # dy. This means that the CEGI is
able to differentia: - between convex and non-convex objects with identical EGI’s.

For a given cc iventional EGI representation of an object, the center of mass coincides
with the sphere ce ter. If P5% is the weight at normal ii;, then the previous statement can be
mathematically ex ressed as

Nfa:u

> Pn; =0 (2.9)

=1

where Nyaces is he number of flat surfaces. For the CEGI representation, this is not always
true. In fact, for a: - given model, if

N, 'f aces

> IPSE R # 0 (2.10)

=1
then that objec : is nor convex. This follows from the expression - |P$E%" I, being the
analogous CEGI’s “center of mass” for the object. On the other hand, if 3~ |P$E/|f; = 0, then
it does not necess..rily mean that the object is convex. This relation is a necessary but not
sufficient conditio for convexity. A point symmetric non-convex object as shown in Fig. 2.6

10




Figure 2.6: A point symmetric object

or objects depicted in Fig. 2.7 satisfy the condition ¥ |P§E%/[fi; = 0. Note that for the objects
in Fig. 2.7, each face has a unique outward normal. This accounts for the satisfaction of the
condition ¥ [P§E%|fa; = 0 in these cases.

Assuming the objectis not point symmetric, non-convex and satisfies the relation 3 |P$E | =
0, then at least one of the following conditions must be satisfied:

1. The non-convex parts of the object possess face gradients not found elsewhere. In other
words, each face must have a unique outward normal. Examples of such objects are
shown in Fig. 2.7; and

2. If the non-convex parts of the object contain faces with the same gradients as those at
other parts, then these faces must lie on the same plane, i.e. they have the same normal
distance from the origin.

Proving condition (2) above is equivalent to showing that if

> aie* =% a;, a;,d;,do being real. (2.11)
=1 i=1

then d; = do, 1 = 1, ..., n. To show this, taking the magnitude of both side of (2.11),

1> ae| =3 a (2.12)
=1 i=1
Using the triangle inequality for the LHS of (2.12),
n n n
1> aie®| <> lae*| =3 a; sincea; 20, i=1.....n (2.13)
=1 i=1 i=1

Hence the equality holds only if and only if 4, i = 1, ..., n are all equal to one another.
Equating the phase components, we getd; =dp,i=1, ..., n.

11




@) (b

(©) (d)

Figure 2.7: Examples of non-convex objects satisfying the relation & [P§5|fi; = 0




Chapter 3

Pose Determination Strategy Using CEGI

3.1 Methodology

Given a prototype CEGI and a partial CEGI of an unknown object, we can recognize the object
and determine its orientation by the following: first, calculating the magnitude distributions of
both CEGI’s and second, proceeding as one would for the conventional EGI’s. Once both the
object and its orientation with respect to the stored model are recognized, the object translation
can be calculated by using the suitably oriented CEGI’s.

The translation parameters can be determined by applying a least-squares technique as
follows: Suppose that the object has been translated by éx, dy and éz in the x-, y- and z-
directions respectively (in the model world coordinates). Then for each surface whose surface
normal is fi,, and whose complex weight is originally As, e/, after translation, the complex
weight becomes Ag,e/“+5d48) where

4d
g

6xi + byj + 62k
Nl + nkyj + nhﬁ 3.1

Then for each matched weight P} in the object CEGI corresponding to the weight Py, in
the model CEGI, let

'

wi = arg([,—':“)
n;

Ap, /+od i)
Amejdt )
= dxny + dyny + dzn;;

= arg(

~~
(98 )
(3°)
S’

fori=1.....Nvsivie

where N,iise is the total number of visible faces on the object. We try to minimize the total
squared error given by

13




Nvisitie
£= ) (wi—nxbx —nydy — n;62)* (3.3)

i=1

This is done by differentiating £ with respect to the three unknown translation parameters
and equating them to zero, i.e.

o 9 Of
B6x = Doy~ 86z 34

which yield the following system of equations:

6xy_nk +8y D nuny +6z)  ngng
8x > nany +8y > _nh +6z_ nyn;

6xd nanp +8y Y Mpnz +6zy_n; = Y wily

Using Cramer’s rule to solve for éx, §y and éz, we get

"o
™0
£ L
S 3

B F

(3.5)

1 Y wilix Y NNy 2 Nl
‘5 Z (-U'iniy Z nizy z niyniz I36)
Z williz Z NiyNiz Z ni_

1| Znk Twna Toang
by = D NNy S willy 3Ny 3.7
Tnan; Ywnz Lng

1 Yok Tngny T wing
§z = -]5 Z NNy Z n,?y Z Williy (38)
TNl 3Ryl o willy

where

Tnk  Tngny Xngng
D=| Tngny Tnf Tnyng (3.9)
YNEhy 2 Dyn; 2N
In order for this scheme to work, the magnitude of the translation (i.e the normalized
translation) must be less than 7 as given in (3.10).

A= \/(5x)2 + (62 + (822 < = (3.10)
This is because the complex weight is unique as long as the phase (and hence the normal
distance of the surface from the origin) lies within the principal interval (—=. 7].

14




3.2 Analysis of Error in Translation Parameters

The upper bound error depends on a variety of parameters, with the main factors being the
normal and normal distance errors. Curiously enough, for a convex object, the magnitude of
the weight does not contribute to the distance error. This is because only the phase components
of the complex weight are used in the least square formulation, and for a convex object, no
complex weight associated with a particular normal is a combination of at least two weights
trom two different disjoint object faces.

Each normal is represented by its directional cosines

n; = (cos & cos b, cos 8, )7 (3.11)

and is subject to the constraint

cos? B, +cos? 8, +cos® 0, = 1 (3.12)

Suppose the exact translation is §d = (6x §y §z) and the approximated translation obtained
using the least square formulationis éd’ = (6x 8y’ 62)7. Inaddition, suppose that the perturbed
I'* normal is indicated by n’;. Let

Py, .
wy = arg (—'—'—'—f—"’—> (3.13)
Pa, oo
1.e.
w; = 6d-ny
= éxcosf,; +dycos b, + 6zcos b, (3.14)

For an imperfectly extracted object,

wi+eg = 6d-n

0x' cos 6, + &y’ cos 6, , + 62" cos 6;
(0x + €;) €OS(Bxy + Nz1) + (by + €y) cos(by 1 + 1y 1) + (3.13)
(02 + €;) cos(,4 + 12y)

Subtracting (3.14) from (3.15) and ignoring the second order terms, we have

-

€ = €,COS bry — Me0x8in b,y + €, COS byy — 1y 0y sin by, + €, cO8 6, — n.10zsin 6.,  (3.16)

Hence

€Cosfy; + €,cosby;+€,c086;,
= €+ Ne0xSinbyy + 1, 0y sin by, + n,,0zsin b, (3.17)
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Suppose that the maximum positive error is |Nelmar = [Myilmax = [Mzslmax = 7Tmax. For the
normalized distances, |6X|maz = |6Y|max = |62|max = 7. The following simplifying assumptions
are made:

1. The normals can be “mapped” into the first octant; x, y and z values are positive such
that the smaller angle subtended with the x, y and z axes are still the same. This means

2. &, €, &, and ¢ are all positive.

Then,

lex|cos By + || cos by, + || cos by
< €| + Nmaxm(sin b5y + sin 6y + sin 6, 1) (3.18)

Summing this over all the visible normals and averaging, we obtain

x| max + €] Ky + |€:]K0: < & + NmaxT(Tox + Toy + Toz) (3.19)
where
=
Kox = cos By
Nvisiblt I=1
1 Nuisivte
Koy = cos 8y,
Nyisivie E
1 Noisitie
Koy = cos 6,
Nuisible ,gl:

(0 < 6,4,8,4, 001 < 325>

1 Nuisibte ) .
£ = S |wr — if - (5x'6y'62)T] (3.20)

N visible -]
1 Nyiridie

Txd = sin 6
Nyisibie ;
Noisible

Tyy = > sinfy,
Nyisisle 157
1 Noisible

T = sin 6,
Noisibie ;

The value of ¢ is normally small when compared to the other terms (at least an order of
magnitude smaller) and thus can be ignored. From (3.19), we can deduce the following set of
constraints on the maximum error in each direction:
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77max7"(7'0x + Toy + T@z)

lex] <
Kox
w(Tox + Toy + Toz) o
lfyl S Nmax (Gx y z (321)
7 (Toe + Tgy + Tz)
‘EZ! S nmax ( 21 Yy t4
Kz

From the set of inequalities (3.22), the constraint on the error in the total effective distance
is

- 2 2 2
€otal = El + €y + Ez

1 1 1
=+ =+ = (3.22)
K’b'x K’&y Ko,

S Ume(Tax + Toy + T&z)

Define the view suitability index

1 1 1

2 = (Tox + Tyy + Ta2) | 3 3
Kox Kp Kaz

so that

€rotai Unm”-oe (3.24)

This index shows us that minimizing the distance error bound requires us to find a viewpoint
having it as its minimum. (3.24) indicates that the error bound increases linearly as a function
of the view suitability index 2.
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Chapter 4

Simulations

4.1 Experiments Involving Polyhedral Objects

Two models are used to test the concept of translation parameter extraction using the CEGI
representation; they are shown in Fig. 4.2 and Fig. 4.3.

4.1.1 Implementational Issues

The scheme was implemented in Lisp, with the models generated using VANTAGE. VAN-
TAGE is a g.ometric/sensor modeler developed at Carnegie Mellon University [1]. The CEGI
viewing sphere is discretized into 240 sampling view directions located at the center of each
face of the 2-frequency dodecahedron (tesselated pentakis dodecahedron) as shown in Fig. 4.1.
The normal direction space is discretized into 240 cells as well. The CEGI weights are re-
computed for each discrete view direction. This is to compensate for the varying degrees of
self-occlusion which causes non-convex objects to register different weights at different view
directions for the same surface normal.

4.1.2 Results

The results of the simulation are depicted in Fig. 4.4 and Fig. 4.5. As can be seen, Model 1
evinces a higher variability in errors than those demonstrated with Model 2. The extremely
high peaks in Fig. 4.4 correspond to errors detected when the actual viewpoint subtends a very
small angle to the x-y plane. Since the ptanes which yield the z-direction information (i.e.
perpendicular to the z-axis) for Model 1 (shown in Fig. 4.2) subtend almost 90 degrees to these
viewpoints, errors predicted in the z-direction are not reliable and are prone to high errors. In
addition, Model 1 has fewer faces than Model 2 (shown in Fig. 4.3). Furthermore, the number
of differently oriented normals in Model 1 is even smaller than those in Model 2.

Table 4.1 summarizes the simulation results for the two polyhedral objects. All the errors
are expressed in percentages of the maximum displacement. (Note: # denotes the average
error in K while 7., is the standard deviation of the error distribution.)

18







It
dista:
eithe
attrit
numt

the rc :

Figure 4.3: Second composite object used for testing

[ Model # | &, | 0w, | & [ | & | e [| & | Setm |

1

1.6

1.2

34

3.8

12.2

15.9

14.1

16.3

2

2.5

1.8

2.6

1.8

2.1

1.7

47

2.3

Table 4.1: Results for Simulations Involving Polyhedral Objects

:an be readily seen from Table 4.1 that Model 1 yields significantly higher predicted
:e errors than Model 2. For Model 1, if the viewpoint subtends a very small angle to the
‘he z-axis or the x-y plane, the errors incurred in the recovery will be very high; this is
ted to the sparse and uneven distribution of Model 1’s normals. On the other hand, the
:r of different surface normals and their more even distribution result in lower errors in
overed parameters, as evidenced in the results for Model 2.

4.2 Experiments Involving Smooth Objects

In ad .ition to the two polyhedral objects. two smooth and continuous objects were also used
in simulations and experiments involving real range data. The two chosen smooth objects are

the tc-us and the ellipsoid (Fig. 4.6).
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Figure 4.4: Errors in dx, dy, dz and Total Distance for Model 1
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Figure 4.6: Models used in experiments: torus (left) and ellipsoid (right)

4.2.1 Simulation
Implementational Issues

The torus is modeled parametrically as [(R+7 cos §) cos ¢, (R+rcos ) sin ¢, 7 sin 61T while the
ellipsoid is represented parametrically as [asin 8 cos ¢, asin 8 sin ¢, b cos 6]T. The ideal setup
is shown in Fig. 4.7. The parametric values used are: r=20, R=40, a=20, b=40, |0;0|=100,
and |V.0|=1000. Simulations are performed for image resolutions nxn forn = 32, 64 and 128.

To achieve a certain degree of realism, a simple ray-tracing technique is employed to
estimate the object surface area projected onto each pixel as well as the surface normal to be
attributed to that surface. This is illustrated in Fig. 4.8. The surface normal is approximated
to be that at point P, while the surface area is estimated by the sum of the area of the triangles
AP 4 P1iP2ry AP xP2uPixy APk P3iPax and AP PayPx. If the surface normal is n; and the area
is Ay, then the complex weight attributed to this surface is simply A,e/™”«. This is done for
all the pixels in the image plane.

Results

The simulation results are graphically depicted in Fig. 4.9 and listed in Tables 4.2 and 4.3. The
number of runs foreach resolution per objectis 250. For both of these models, it is apparent that
the errors in the predicted displacement decreases monotonically as the resolution increases.

We also observe that the displacement errors incurred for the torus are significantly higher
(a factor of about 2-3) than those incurred for the ellipsoid. This phenomena can be readily
explained as follows:

Since the ellipsoid is convex, the resultant complex weight in each CEGI cell is the sum of
those weights corresponding to surface patches which are either contiguous or spatially close
to each other. (The number of contributing surface patches to a cell is inversely proportional
to the local Gaussian curvature.) As such, the phases of these contributing complex weights
are not expected to be very different from each other, despite errors in the phases. Since the
resultant phase must lie between the minimum and maximum of these phases, the variance of
the resultant phase error is expected to be small.
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Figure 4.7: Simulation using the torus (left) and ellipsoid (right). n denotes the resolution in
the x- and y- directions of the simulated image plane.
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Figure 4.8: Approximation of area and surface normal in simulation
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| Resolution || &; | 0o, | &, | 9 | & | 9, [ @ | Ou, |
32x32 50({5556|6.1 (393399 7.3
64 x64 3213213537 (25,20 (63| 4.1
128x128 {14 |15 13|12 |13 )11 (27| 1.7

Table 4.2: Simulation Results for Torus

[Resolstion [ & [, [ % | 7 | [0 [ [ oo |
32x32 11(1.1 11008 |18 15§27 ] 1.5
64 x64 08|08 (0807|1511 ]21] 1.1

128x128 10504 {0503 112|101} 15| 09

Table 4.3: Simulation Results for Ellipsoid

On the other hand, for the non-convex torus, this is not true. Two spatially distinct groups
of surface patches, whose normal distances differ greatly, may contribute to a cell in the CEGI.
The phase of the resultant complex weight is thus expected to have higher variability than that
for the ellipsoid, for the same amount of phase error per surface patch.

4.3 Verification of the View Suitability Index

The previous chapter establishes the upper bound relationship between errors in the distances
oz, 6y, 65, the total effective distance, and the view suitability index. Simulations were made
to verify this linear relationship. To simplify the analysis, we considered the case where the
normals are not discretized according to the pentakis dodecahedron. Instead, normals are
represented exactly. Random positional errors, which are subject to certain specified angular
errors between the actual and randomized normals, are created to simulate the errors that could
occur in a real situation. Since Fig.s 4.14-4.16 and Fig.s 4.21-4.22 show that the distance
errors do indeed increase in a linear fashion with the angular error, we are able to use the view
suitability index as a means of comparison. Furthermore, as Fig.s 4.10-4.13 and Fig.s 4.17-
4.20 show, the view suitability index (24 does appear to be a reasonable means of determining
the upper bound of the distance errors in the x-, y-, z-, and effective total distances.
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Figure 4.9: Simulation Results for Torus and Ellipsoid
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Figure 4.11: dy Error vs. View Suitability Index for Model 1 (Angular Error = 3%)
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Figure 4.12: dz Error vs. View Suitability Index for Model 1 (Angular Error = 3°)
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Chapter 5

Experiments Using Real Range Data

To further confirm the validity of the pose recovery technique, experiments involving real
range data of two smooth objects were conducted. The two smooth objects are the torus and
ellipsoid, whose databases have been created in the simulations earlier.

5.0.1 Implementational Issues

The torus and ellipsoid were crafted out of clay to resemble the models whose databases were
created. A light stripe range finder was used to produce a range image of these two objects in
various poses and at two different resolutions. The experimental scheme is shown in Fig. 5.1.
The 1esolution of Set 2 range images is twice that for Set 1 images.

5.0.2 Results

The surface maps of the range images taken are shown in Fig. 5.2 (torus - Set 1), Fig. 5.3
(ellipsoid - Set 1), Fig. 5.4 (torus - Set 2), and Fig. 5.5 (ellipsoid - Set 2). The experimental
results for these images are summarized in Tables 5.1 and 5.2. Note that all the figures are
quoted in percentages of the maximum allowable displacement. In this case, all the numbers
are in millimeters.

Again, as for the simulation results, the displacement errors are smaller for Set 2 experi-
ments (which feature higher resolution range images) for both objects. Again the errors in the
translation parameters are significantly higher (this time by a smaller factor of 1.5-2) for the
torus than those for the ellipsoid.

Despite the fact that the clay models are not exactly the same as the models created in the
database, reasonable accuracy could still be attained. Figs. 5.6 and 5.7 compare the actual
positions with the calculated positions of the tcrus and ellipsoid in the range images.
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Set 1

Lower Resolution

(x, y spacing of
about 3 mm)

S

3 cases with object having different
orientation and displacement

Set 2
|

Higher Resolution
(x, y spacing of
about 1.5 mm)

Figure 5.1: Experimental scheme

Lower Resolution Higher Resolution
Case # | &, | &, | &, || &, | & | &, | &, | &
1 1715950 851429140 54
2 26 141173195 (422556 | 7.7
3 3114236166 |32]|14:29]| 55

Table 5.1: Experimental Results for Torus

Lower Resolution Higher Resolution
Case # | & | &G | &, || €ape || & | €, | &4, || ams
1 091141323709 (31]|1.6] 3.6
2 0421495409 [41]|02] 42
3 1312721139116 |05]191 26

Table 5.2: Experimental Results for Ellipsoid
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Figure 5.2: Surface maps for the torus at three poses (Set 1)
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Figure 5.6: Top, Left: Intensity image of torus (Set 2, Case 1); Top, Right: Superimposed
model (Set 2, Case 1); Bottom, Left: Intensity image of torus (Set 2, Case 2); Bottom, Right:
Superimposed model (Set 2, Case 2)
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Figure 5.7: Top, Left: Intensity image of ellipsoid (Set 2, Case 1); Top, Right: Superimposed
model (Set 2, Case 1); Bottom, Left: Intensity image of ellipsoid (Set 2, Case 2); Bottom,
Right: Superimposed model (Set 2, Case 2)
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Chapter 6

Conclusions

A new variant of the EGI representation which encodes object face position has been de-
scribed. Known as the Complex Extended Gaussian Image (CEGI), it is a histogram of spatial
orientation in which each weight associated with a normal is a complex number. The normal
distance of the face from the predefined origin is encoded as the phase of the weight while the
magnitude of the weight is the visible area of the face.

The CEGI provides a global method of extracting both the orientation and translation of
a detected object with respect 1o a stored model or prototype. The method of determining
the translation parameters is simple, being based on the least squares formulation. The CEGI
effectively decouples the orientation and translation determination into two separate problems.
The orientation of the object can be determined by first calculating the magnitude distribution
of its CEGI before matching the resulting distribution with those in the database. This
operation is exactly the same as that using the conventional EGI. The translation parameters
can subsequently be estimated by comparing the complex weight phases.

A significant advantage of this scheme is that it works for both polyhedral and smooth
objects. It can be used without the need to know the type of object a priori. On the other hand,
the polyhedral object whose translation parameters need to be determined should be relatively
complex, in terms of the numbzr of faces and distribution of surface normals. The more
the number of faces and discrete normal directions, the more accurate the resulting estimated
displacement is likely to be. In addition, the accuracy of estimated translation parameters for
smooth objects is influenced by the degree of concavity. In experiments using actual data
collected from smooth objects, accuracies of up to 3% is possible using the CEGI.

Based on error analysis, the accuracy of the derived translation parameters is sensitive to
the angular error of the surface normals, the magnitude of the actual translation parameters,
and the distribution of the surface normals. An index which can be used as an indication of the
bound on the translation parameters has been derived and is called the view suitability index.
It has been shown through simulations that the mean of the translation errors is linear with
normal angular error.

The error analysis shows that the view suitability index can be used as a measure which
bounds extracted ranslation parameters. The CEGI, whose distance information is encoded in
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the weight phase, has been shown to be an effective means of determining object displacement.
In addition, it is capable of distinguishing between the convex object and most other concave
objects whose EGI'’s are identical to that of the convex object. Finally, the CEGI can be used
for any reasonably complex objects, polyhedral or smooth.
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